

Workshop Arduino

Prof. Simão

Já temos um led piscando...

LED da placa (pino 13) deverá piscar

Vamos fazer isto fora da placa

- A placa possui pinos configuráveis como entradas ou saídas
 - Digitais: ligado e desligado
 - Analógicas: uma gama de valores entre mínimo e máximo

Vamos fazer isto fora da placa

 Vamos reusar o código já testado, mudando o número da porta que usaremos como saída

Breadboard / Protoboard

• Placa para montagens experimentais

1010000101

- 2022

simao@ufpr.br

1100001 0100001

Breadboard / Protoboard

0100000

Breadboard / Protoboard

Componentes

simao@ufpr.br - 2022

Tl Aplicada

Placas padronizadas - soldagem

Vamos trabalhar

O que precisamos?

- Arduino e IDE configurados
- Breadboard e fios de conexão
- Um LED, um resistor
 - O resistor é necessário em função de que o LED trabalha com características elétricas diferentes do Arduino

Início da eletrônica teórica

Diodo emissor de luz - LED

É um componente que possui polaridade definida, um lado vai ligado à tensão positiva e outro à negativa da fonte.

O Arduino trabalha com 5V; algumas placas trabalham com 3,3V. Os leds vermelhos trabalham com 1,7V, o amarelo com 2V e o verde com 2,1V. Azuis e brancos beiram 3V e infravermelhos 1,1V.

A corrente dos leds dificilmente ultrapassa 20mA.

 Se tiver dúvidas quanto à polaridade do LED, use um multímetro ou uma pequena bateria (CR2032) para testar.

Há problemas em inverter?

- A inversão da polaridade em um componente polarizado, tal como o led, um transistor e alguns tipos de capacitores, poderá queimá-lo.
- Em certas condições também poderá haver dano na placa do Arduino.

Tl Aplicada

Como limitar a corrente/ tensão

 De forma a adequar as grandezas elétricas disponíveis na placa do Arduino às características do led, usamos resistores.

- Como diz o nome, são componentes que resistem à passagem da corrente elétrica.
- Em função do esforço realizado para a passagem por um resistor será gerada uma queda na tensão disponível.

Lei de Ohm

- Estudada na cadeira de física do ensino médio, a Lei de Ohm estabelece uma relação entre tensão, corrente e resistência.
- A queda de tensão é dada pelo produto da corrente pela resistência:
 - E = R.I

Valor do resistor

- Vamos estabelecer uma baixa corrente para nosso resistor, 10mA (0,01A), e vamos calcular para que produza uma queda de 3V na tensão:
 - E = R.I
 - 3V = R.0,01
 - $R = 300 \Omega$ (300 ohms)

Séries comerciais de resistores

	Α	В	С	D
1	Valor	E24	E12	E6
2	1	5,00%	10,00%	20,00%
3	1,1	5,00%		
4	1,2	5,00%	10,00%	
5	1,3	5,00%		
6	1,5	5,00%	10,00%	20,00%
7	1,6	5,00%		
8	1,8	5,00%	10,00%	
9	2	5,00%		
10	2,2	5,00%	10,00%	20,00%
11	2,4	5,00%		
12	2,7	5,00%	10,00%	
13	3	5,00%		
14	3,3	5,00%	10,00%	20,00%
15	3,6	5,00%		
16	3,9	5,00%	10,00%	
17	4,3	5,00%		
18	4,7	5,00%	10,00%	20,00%
19	5,1	5,00%		
20	5,6	5,00%	10,00%	
21	6,2	5,00%		
22	6,8	5,00%	10,00%	20,00%
23	7,5	5,00%		
24	8,2	5,00%	10,00%	
25	9,1	5,00%		

Existem várias séries de valores padronizados para os resistores.

Nos circuitos, escolhe-se o componente comercial de valor mais próximo do desejado.

Os resistores são fabricados/ vendidos baseando-se em um valor central, ao longo do qual temos variações para mais ou para menos (tolerância).

Os valores indicados ao lado terão multiplicadores dados por potências de dez (ex.: x 10, x10.000, etc).

E o nosso resistor de 300Ω ?

- Os valores mais próximos seriam 2,7; 3 e 3,3; todos multiplicados por 100.
- A escolha óbvia seria 3 x 100 = 300, porém nem sempre temos à mão o valor desejado.

12	2,7	5,00%	10,00%	
13	3	5,00%		
14	3,3	5,00%	10,00%	20,00%
	~ ~	E 0.001		

Tl Aplicada

Aspecto de resistores

Código de cores

Cor	1ª Faixa	2ª Faixa	N° de zeros/multiplicador	Tolerância
Preto	0	0	0	
Marrom	1	1	1	
Vermelho	2	2	2	
Laranja	3	3	3	
Amarelo	4	4	4	
Verde	5	5	5	
Azul	6	6	6	
Violeta	7	7	7	
Cinza	8	8	8	
Branco	9	9	9	
Dourado			x0,1	
Prata	1		x0,01	
Sem cor				± 20%

Resistores são identificados por códigos de cores, conforme mostrado ao lado.

O resistor que aparece abaixo possui (marrom=)1 (preto=) 0 (vermelho=) 00 ohms, ou 1000 ohms, ou 1000 Ω (normalmente identificado como sendo de 1k Ω).

Finalmente, nossas opções

Vermelho (2), violeta (7), marrom (1 zero, x10) = 270Ω Laranja (3), Preto (0), marrom (1 zero, x10) = 300 Ω Laranja (3), Laranja (3), marrom (1 zero, x10) = 330 Ω

Calculadora online

http://www.novaeletronica.com.br/ferramentas_online/cores-de-resistor-online.php

🛈 🖲 www.novaeletronica.com.br/ferramentas_online/cor 🛛 🚥 🗟	☆	Q	Pesquisar	lii\		ej.	۲
--	---	---	-----------	------	--	-----	---

	C�Iculo Online de Cores de Resistores
	Calculadora de código Da Cor Do Resistor
	Entre com as cores das faixas do resistor e obtenha seu valor em Ohm�s (Ω)
	Valor Da Resist�ncia:
¥ 🖻	

: 6

Fim da eletrônica teórica

Ligar led externo

- Primeiramente vamos levar a energia para a *breadboard* e testar
- Depois, iremos mudar o código que faz piscar o led da placa do Arduino para que pisque o led externo

Evite problemas.

Trabalhe com a energia <u>desligada</u> (desconecte o cabo USB).

Evite problemas.

Atenção à polaridade dos componentes. Se você inverter (o positivo com o negativo)...

1010000

Tl Aplicada

Componentes necessários

- 2022

simao@ufpr.br

Separe dois condutores (no exemplo **vermelho** e **preto**) e ligue-os aos pontos **5V** (ou VCC) e **GND** (*ground*, 0V) de sua placa Arduino. <u>Em geral</u>, o condutor **vermelho é o positivo** e o **preto é o negativo**.

Leve os pontos de energia para placa de experimentação.

As linhas coloridas no exemplo indicam que os pontos horizontais estão interconectados em uma barra.

Teremos uma linha de alimentação **positiva** (+5V) e outra com o **0V**.

O resistor não é polarizado, o led é.

Ligue um terminal do resistor na barra de OV e o outro terminal em uma coluna qualquer (no exemplo, na 55).

Ligue o lado negativo do led (o cátodo, o terminal menor – lado chanfrado) na mesma coluna em que foi ligado o resistor (55 no exemplo ao lado).

Se os terminais não tiverem sido cortados, o lado maior é o positivo.

11 Aplicada

1. Ligação de energia

Utilize um fio de ligação para conectar o outro terminal do led (o positivo ou ânodo, terminal mais longo – na figura ao lado ficou na coluna nº 49) até a barra de alimentação positiva (a linha na qual foi conectado o 5V vindo da placa do Arduino).

1010000 (

- 2022

Conecte o cabo USB ao computador.

Não precisa entrar no Ide, somente estamos testando as ligações (e praticando...).

Se não deu certo, desligue o cabo USB e revise as ligações, em especial a do led; troque os fios, eles costumam dar problemas.

Se tudo deu certo, desligue o cabo USB e vá para próxima etapa.

- 2022

2. Ligação de comando

Desconecte o cabo USB.

Ligue a conexão led que estava na barra de 5V ao pino de saída digital 3 de seu Arduino.

3. Codificação

Inicie o IDE e carregue o seu primeiro exemplo, de piscar o led da placa (Arquivo/ Exemplos/ 01.Basics/ Blink)

Novo	Ctrl+N	Exemplos embutidos	
Abric	Ctrl+O	01.Basics	AnalogReadSerial
ADHI		02.Digital	BareMinimum
ADRI Recence		03.Analog	Blink
Sketchbook		04.Communication	DigitalReadSerial
Exemplos	CtcluW	05.Control	Fade
Fechar	Ctrl+W	06.Sensors	ReadAnalogVoltage
Salvar	Ctrl+5	07.Display	
Salvar como		08.Strings	
Configuração da página	Ctrl+Shift+P	09.USB	
Imprimir	Ctrl+P	10.StarterKit_BasicKit	
Preferências	Ctrl+Virgula	11.ArduinoISP	
Sair	Ctrl+Q	- Exemplos para qualquer placa	
		ArduinoHttpClient	
		Bridae	
		Esplora	
		Ethernet	
		Firmata	
		GSM	
		LiquidCrystal	
		LiquidCrystal_I2C	
		Robot Control	
		Robot Motor	
		SD	

3. Codificação

Salve o arquivo com outro nome (Arquivo/ Salvar Como...).

No exemplo ao lado todas as linhas de comentários forma removidas para podermos nos concentrar no código.

simao@ufpr.br - 2022

3. Codificação

Arquivo <u>E</u> ditar <u>S</u> ketch Ferran
testeLed §
1 2 void setup() { 3
<pre>4 pinMode(3, OUTPUT); 5 }</pre>
6 7
9 digitalWrite(3, HIGH);
<pre>10 delay(1000); 11 digitalWrite(3, LOW);</pre>
12 delay(1000); 13}

Defina o pino 3 como saída, compile e envie para o Arduino, com a ligação da placa experimental já efetuada e conferida.

simao@ufpr.br - 2022

Parabéns!

Bem vindo ao mundo maker do Arduino.

Melhorando o código

Arquivo <u>E</u> ditar <u>S</u> ketch Ferra
testeLed §
1
2 vola setup() {
<pre>4 pinMode(3, OUTPUT);</pre>
5 }
6
/ 8 void loop() {
9 digitalWrite(3, HIGH);
10 delay(1000);
<pre>11 digitalWrite(3, LOW); 10 delew(1000)</pre>
12 detay(1000); 13}

No código original havia uma palavra reservada, LED_BUILTIN, a qual corresponde à porta 13 (um led na placa).

Nós, explicitamente, utilizamos o número da porta que escolhemos, 3.

Mas, podemos também dar um 'nome' para nossa porta.

Melhorando o código

Arq	uivo	<u>E</u> ditar	<u>S</u> ketch	Ferramen <u>t</u> as	Ajuda
Ø	Ð		*		
te	esteL	ed			
1	#defi	ne noss	oled 3		
2	void	setup()	{		
3	pin	Mode (no	ssoled.	оптепт):	
5	}	n io dia gina		00110177	
6					
7		1 ()	-		
8	vo1a	LOOD()	1	lad UTCU)	
9	a1g	11alwr1	te(nosso	lea, HIGH);	
10	dei	ay (1000		7 1 1 1 1 1 1	
11	dig	utalWri	te (nosso	led, LOW);	
12	del	ay (1000).);		
13	}				

Foi criada uma constante nossoled, e atribuída para ela o valor 3.

Isto foi feito com a declaração *#define*.

Veja ao lado como ficou.

Teste!

Agora com dois leds

Arquivo <u>E</u> ditar <u>Sketch</u> Ferramen <u>t</u> as Ajuda
testeLed
l #define nossoled 3
2 void setup() {
3
<pre>4 pinMode(nossoled, OUTPUT);</pre>
5 }
6
7
8 <pre>void loop() {</pre>
<pre>9 digitalWrite(nossoled, HIGH);</pre>
10 digitalWrite(LED BUILTIN, LOW);
11 delay(1000);
<pre>12 digitalWrite(nossoled, LOW):</pre>
13 digitalWrite(LED BUILTIN, HIGH):
14 delav(1000):
15 }

Com o código ao lado, queremos um led apagando (LOW) e outro acendendo (HIGH), alternadamente.

Teste!

??? Por que não funcionou ???

1000010 1000011 000

Agora com dois leds

Агс	ļuiv	o <u>E</u> di	tar	<u>S</u> ketch	Ferramen <u>t</u> as	Ajuda
0	e		t	*		
t	este	eLed				
1	#de	fine r	ioss	oled 3		
2	voi	d setu	ıp ()	{		
3 4	n	inMode	Ino	ssoled		
5	}	THIOR	, (HØ	550 CGG,	oon ory,	
6	Ī					
7				_		
8	voi	d loop)()	{	.	
9	d	igital	.Wri	te (nosso	oled, HIGH);	
10	d	igital	.Wri	te(LED_E	BUILTIN, LOW);	
11	d	elay(]	.000);		
12	d	igital	.Wri	te (nosso	led, LOW);	
13	d	igital	.Wri	te(LED E	BUILTIN, HIGH);	
14	d	eĺay(]	.000); –		
15	}					

Definimos que haverá um comando de escrita na saída, na função *loop()*.

Porém, não definimos na função *setup()* que a saída da placa estaria ligada...

As duas funções funcionam em conjunto...

Agora com dois leds

Arquivo <u>E</u> ditar <u>S</u> ketch Ferramen <u>t</u> as Ajuda
testeLed
l #define nossoled 3
2 void setup() {
<pre>3 pinMode(LED_BUILTIN, OUTPUT);</pre>
<pre>4 pinMode(nossoled, OUTPUT);</pre>
5 }
6
7
8 void loop() {
<pre>9 digitalWrite(nossoled, HIGH);</pre>
<pre>10 digitalWrite(LED_BUILTIN, LOW);</pre>
ll delay(1000);
<pre>12 digitalWrite(nossoled, LOW);</pre>
<pre>13 digitalWrite(LED_BUILTIN, HIGH);</pre>
14 delay(1000);
15 }

Acerte o código conforme ao lado.

Teste!

HIGH ou LOW?

- SE você ligar um lado do LED no GND, que é equivalente ao 0V, para que o LED acenda o outro lado deve estar positivo.
 - Portanto, acionamos o LED com o comando HIGH (que corresponde a colocar +5V na saída).

HIGH ou LOW?

- Também podemos deixar um lado do LED ligado no +5V e ligar o outro lado no Arduino, usando uma lógica negativa:
 - Quando colocarmos um sinal LOW no pino em que foi ligado o LED ele acenderá.
- Usar a lógica positiva ou a negativa é indiferente, depende de com qual você se sente mais à vontade.

Tl Aplicada

Escrita PWM

- PWM significa "Pulse Width Modulation"
- A Modulação por Largura de Pulso possibilita que controlemos quanto de energia (0 a 100%) será fornecida dentro de um pulso (qual será sua largura).
- Vamos aproveitar nosso protótipo para testar esta funcionalidade.

simao@ufpr.br - 2022

Usaremos a mesma conexão.

Não precisa desconectar.

Salve seu programa com outro nome.

PWM

Arquivo Editar Sketch Ferramentas Ajuda 🕑 🗈 🛨 본 testeLed PWM 1 #define nossoled 3 2 void setup() { 3 4 pinMode(nossoled, OUTPUT); 5 6 8 void loop() { analogWrite(nossoled, 0); 9 delay(300); 10 analogWrite(nossoled, 50); 11 12 delay(300); 13 analogWrite(nossoled, 100); 14 delay(300); 15 analogWrite(nossoled, 150); 16 delay(300); 17 analogWrite(nossoled, 200); 18 delay(500); 19 }

A função de escrita agora é a *analogWrite(porta, valor)*.

O valor é a quantidade do ciclo de trabalho PWM que ficará ativo (em nível HIGH).

Teste!

PWM

Arquivo Editar Sketch Ferramentas Ajuda testeLed PWM continuo 1 #define nossoled 3 2 void setup() { 3 pinMode(nossoled, OUTPUT); 4 51 6 8 void loop() { int qtdade = 0; for (qtdade = 0; qtdade < 256; qtdade++)</pre> 10 11 { analogWrite(nossoled, qtdade); 12 13 delay(50); 14 }

Agora transformamos o valor PWM em uma variável inteira, chamada 'qtdade'.

E colocamos um loop controlado que varia o valor armazenado em 'qtdade' de 0 a 255, continuamente.

Teste!

(obs.: qtdade++ significa some um ao valor atual da variável qtdade).

15 }

PWM

Arquivo Editar Sketch Ferramentas Ajuda testeLed_PWM_continuoSobeDesce 1 #define nossoled 3 2 void setup() { 3 pinMode(nossoled, OUTPUT); 5 6 8 void loop() { int qtdade = 0; for (qtdade = 0; qtdade < 256; qtdade++)</pre> 10 11 12 analogWrite(nossoled, qtdade); 13 delay(30); 14 15 16 for (qtdade = 255; qtdade>=0 ; qtdade--) 17 analogWrite(nossoled, qtdade); 18 delay(30); 19 20 }

Agora o código aumentará o valor até o máximo e depois diminuirá.

Teste!

Experimente comentar as linhas nas quais ocorre o delay(30) e/ ou alterar seu valor e veja o resultado. Ajuste da forma que ficar melhor para você.

(Para comentar, coloque um '//' <u>antes</u> do comando, ele ficará cinzento e passará a ser um comentário – ou seja, não será funcional).

LED RGB

#define vermelho 9
#define verde 10
#define azul 11

int aleatorio;

void setup() {
 Serial.begin(9600);
 pinMode(vermelho, OUTPUT);
 pinMode(verde, OUTPUT);
 pinMode(azul, OUTPUT);
 randomSeed(analogRead(0));

```
void loop() {
    aleatorio = random(256);
    analogWrite(vermelho, aleatorio);
    delay(100);
    aleatorio = random(256);
    analogWrite(verde, aleatorio);
    delay(100);
    aleatorio = random(256);
    analogWrite(azul, aleatorio);
    delay(100);
```


Terminou seu protótipo?

Gravação do código

Pode gravá-lo em um microcontrolador compatível, que será levado para sua placa definitiva, ou seu MVP!

Componentes

Também pode produzir uma versão em placas com solda, de forma que não ficará com fios soltos e será mais prático de demonstrar.

O que você aprendeu, que será necessário para os próximos passos:

1. Ligar componentes externos à placa do Arduino

- 2. Utilizar uma saída digital com escrita digital
- 3. Utilizar uma saída digital com escrita analógica

Tl Aplicada

Parabéns!

